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 MAXIMUM PRINCIPLE ON THE ENTROPY
 AND SECOND-ORDER KINETIC SCHEMES

 BRAHIM KHOBALATTE AND BENOIT PERTHAME

 ABSTRACT. We consider kinetic schemes for the multidimensional inviscid gas
 dynamics equations (compressible Euler equations). We prove that the discrete
 maximum principle holds for the specific entropy. This fixes the choice of the
 equilibrium functions necessary for kinetic schemes. We use this property to
 perform a second-order oscillation-free scheme, where only one slope limitation
 (for three conserved quantities in 1D) is necessary. Numerical results exhibit
 stability and strong convergence of the scheme.

 INTRODUCTION

 We consider the gas dynamics equations in one or two space dimensions,

 atp + div(pu) = 0,
 (1) & atpu ? + div(puju) + a, p = 0, j = 1, 2,

 9,E +div[(E +p)u]= 0,

 where x = (xl, x2), u = (ul, u2), and the total energy E - piu12/2+pT/(y-1)
 is related to the pressure by the relation p = pT, 1 < y < 2 in dimension 2,

 1 < y < 3 in dimension 1.
 It is known that, because of shock waves, an entropy inequality has to be

 added to (1) (see Lax [3] for instance),

 (2) atpS + div(puS) < 0,
 where the specific entropy can be chosen as

 (3) S = p- T11(y-1)
 As was proved by Tadmor [10], the combination of (1) and (2) yields that S'
 satisfies the maximum principle

 (4) S(x, t + h) < max{S(y, t); lY - xi < jjujj,>Oh},
 and, in 11D, Godunov and Lax-Friedrichs schemes preserve this property at the
 discretized level because they solve exactly the system (1). A reason why (4)
 should hold is that S satisfies the (meaningless) equation

 ats + u * Vxs < 0.
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 The purpose of this paper is to show that the property (4) is also satisfied for
 kinetic schemes in one or two dimensions (we do not consider higher dimensions
 here, but the extension is straightforward). This requires one to choose the
 equilibrium function in an appropriate way, in the class introduced by Perthame
 [6, 7], and to interpret the scheme as a discretization of a transport equation.
 Then, the property (4) follows from a variational principle. It is remarkable
 that the appropriate equilibrium function is not the Maxwellian distribution.

 It is natural to try to extend this property to second-order accurate schemes.
 It then appears that a conservative second-order reconstruction, following the
 method introduced by Van Leer [12], has to increase the specific entropy, and
 we can only impose the maximum principle up to a second-order error. This

 is achieved in reconstructing a second-order approximation Yi+1/2 of (P(xi+112)
 for o = p, u, or S. To do so, we use centered predictions of A/p, and we
 impose both

 (5) 0 < Si+1/2, Si-112 < max(S1, Si+,, Si-,), and Pi+1/2 > 0

 and the conservation of the quantities P = p, pu, E, i.e.,

 (6) 2TI = Ti+i12 + Ti-1/2.

 In practice, to realize (6), we have to relax (5) up to second order.
 Numerical tests show that this limitation (5) alone is enough to prevent much

 of the oscillations in the fully second-order scheme, at least for some classical
 tests. This is somewhat surprising since nonoscillatory schemes usually require
 as many limitations as conserved quantities, even though the ENO theory ([2,
 9] and the references therein) shows that some flexibility in the reconstruction
 is possible.

 We would like to point out that the conservative entropy inequality (2) is well
 understood at the discrete level (Osher [5], Tadmor [ 1]) for general hyperbolic
 systems. But the maximum principle for the specific entropy (3) is not a con-
 sequence of (2) alone, and it holds only for the particular case of gas dynamics
 (and related systems); therefore, it requires a specific proof.

 The paper is organized as follows. In the first section, we consider the 1D
 case; the 2D case, for a general mesh (rectangular, triangular, dual type), is
 treated in ?2. Then, the second-order scheme, how the limitation (4) is used,
 and numerical tests are discussed in ?3.

 1. THE 1D CASE

 The general form of a conservative scheme for (1) can be written

 (7) Uin+ - Un + c (Fn -Fn ) = 0

 where Uin = (p7, (pu), Eny)t is the average, on the mesh (xi112, xi+112) with
 uniform size Ax, of the vector (p(x, nAt), pu(x, nAt), E(x, nAt)). The time
 step At is related to a by

 (8) a = At/Ax.

 The class of kinetic schemes which we are going to consider is given by a flux

 splitting

 (9) Fin+112 = F+(Uin) + F-(Uin+),
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 (10)

 F+(U) = I A [1 V_ 2 ) X + (0, 0, T)tC ( - )] d /VT4,

 and F- is obtained by integrating over v < 0 rather than v > 0. This flux is

 consistent as soon as F-(U) + F+(U) = (pu, pu2 + pT, (E +p)u)t, which is

 achieved when X, C are even, nonnegative functions satisfying (see [7])

 (1 (1, W2)X(w) dx = (I 1), C (w) dw = A:= (3 -y)l(y -1).

 Several choices of x,; are possible, but to fit with the general theory, they
 should yield an entropy in cell property. This is achieved, for instance, by the

 classical Maxwellians aew2 /2 as in Deshpande [1] for the single macroscopic

 entropy p ln T . Other choices, as in [6], are also possible but always associated
 with one single macroscopic entropy. On the other hand, it is very clear in the

 proof given in [10] that infinitely many entropies are necessary for the maximum
 principle. The only choice of X, C which meets this requirement is

 (12) x(w) = a(1- w2/f6), ;(w) = -5(y-1)/(y-3) (W)](y+1)1(3-y)
 where a, ,B, 3 are chosen to satisfy (1 1), i.e.,

 a = [2 j7t/2 Cos21(y-1d) -d 1

 (13) ,B= J / cos2/os OdO j sin2 dcos21(>-OdO,

 C5(Y+1)/(Y-3) - '2i8 -/,I

 Indeed, with this choice we can obtain a family of singular entropy inequali-
 ties. They correspond to the generalized convex functions pHl(U), where fl is

 parametrized by q > 0:

 0 if pY-1/T < 1,

 (14) fl(U) = if pY-11T = ,
 t +oo otherwise,

 which are obtained as the limit as p tends to +oo of the convex entropies

 p(pY-l/Tq)P. The corresponding conservative entropy inequality has a flux
 splitting form

 (15) (pj)nl+l <(p11)7 - G+(U ) + gG-(U) + oG+(Uin 1)- G-(Uin+),
 where the entropy fluxes GI depend on ,

 (16) G-(U) = Fp (u)riu),

 and where Fp is the mass flux in (7), (9). It has to be noted that G' has
 the sign + and pi - oFp, (Uin) + oF, (Uin) > 0 with the above CFL condition.
 Therefore, the right-hand side of (15) is the sum of three nonnegative terms

 depending, respectively, on Uin, Uin U [Un+j. We use the convention that the
 right-hand side is +oo whenever one of these three terms is +oo.

 We can now state our main result.
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 122 BRAHIM KHOBALATTE AND BENOIT PERTHAME

 Theorem 1. With the choice (12), the kinetic scheme (7)-(10) satisfies
 (i) pi2+l >0?) Tin1 >0 whenever pin, Tin > 0,
 (ii) the conservative entropy inequalities (15) for any q > 0,
 (iii) the maximum principle on the specific entropy

 (17) n+ +l(+ll(-)< max(Sn' Sn I 1)
 under the CFL condition (I u I + fl T) n 1 for all i .
 Remarks. (1) For y = 1.4, we find ,6 = 7, and thus our CFL condition is
 stricter then the classical one. But in practice we can use the classical one.

 (2) The theory of kinetic formulation of the isentropic system, developed in
 Lions, Perthame, and Tadmor [4], requires the same X-function in (12), but
 there, the entropies are much simpler than those developed in the proof below.
 The exact relation between the two theories is unclear to the authors.

 Proof of Theorem 1. First step: The kinetic level. We first introduce the dis-
 cretized transport equations

 (1) fi(V) - fn(W) + [V+ fin(W)-v fn+ (W-+n l()+-fn(W)] = ?,

 (19) gL(v)-fgi(v) + [V+g/n(V)-V_gn I(v)-V+gf 1(V) + V_gi(V)] = O,

 where v+ = max(O, v), v+ - v = v, and

 (20) fif(v) = pnX[(v u)/x ], gin(v) = p7V7IT [(v-u7)/x/7].
 As usual [1, 7], the finite difference scheme (7), (10) is deduced by multiplying
 (18) by the vector (1, v, V2/2)t and adding to it (19) multiplied by (0, 0, I)t
 and integrating against dv .

 Indeed, this clearly follows from the identities

 (tn, vfn, vn+gin) dv,

 (21) Un+l (f, vfi, fi + gi) dv,

 F?(Un) = ?Jv? (fin, vfln v2 , + gi dv,

 which follow from (10) and the consistency relations (1 1). Now, we have fi >
 0, gi > 0, under the condition olvl < 1 for all v such that Jin(v) $& 0, and
 this is exactly the CFL condition of Theorem 1. This proves (i).

 Second step: The maximum principle. We notice that h = (fy+l gy-3) 1/(y- 1)
 is a convex function of f, g. Since fJ and gi are also convex combinations of
 fn) f4n1I, fin /1 and gn,l, g, gin (whenever a satisfies the CFL condition),
 we thus have

 (22) hi < hi(l - Uv+ - Uv) + h oav + hn Uav+.
 Now ,with the choice (12) of x, 4 , the function h is just given by

 (23) hi= -(Sn)21 {Iv-un 12<flTl},
 and thus we obtain

 (24) hi < E := z max(SIn, S7n I, Sn 1U)2.
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 MAXIMUM PRINCIPLE AND KINETIC SCHEMES 123

 At this level we need the following lemma, which is similar to those of [6] and
 whose proof uses simple calculus of variation and is thus skipped.

 Lemma 2. Let e = p/(y - 1) be such that

 e = min {j[ 2f(v)+g(v)] dv;f(v)>O,g(v)>O,

 j(1, v)f(v)dv = (p, 0) (p > 0), fy+lgy-3 < ?y-1

 Then p/Tl/(Y-l) - X/5, and the minimum is uniquely achieved by f =

 p X(v U), g = pV/I(PT- U) LI

 Returning to the proof of Theorem 1, we apply the lemma with f =

 f(v - un+1), g = g,(v - un+,), so that the constraints in the minimization
 problem are realized with p = pn+1 and X given in (24). We thus have

 (Y T)j($2 fg)=P,+1 Tn+1 > e(y-1)= pn+1 fn+

 which exactly means Sn+1 > X/5 and (iii) is proved.
 Third step: Entropy inequality. As in the second step, let us introduce, for a

 fixed positive number q and for p > 1, the function

 k = [(fY+1 gy-3)1/(y-1)]P

 Since it is a convex function of f and g, we also have

 ki(v) < < (v)(I - -v+ -v) + kln+(v)uv ? ki (v)ouv+.
 We need now the following lemma.

 Lemma 3. The minimization problem

 min { f(fY+1gy-3)pl(y-1)dv; f > O, g > 0,

 j(1, v)f dv = (p, 0), j f+g= pT/(yO - 1)}

 admits a unique minimum

 Fp ( 13p) Gp = T6pFp 1- I 3 T) '

 where ap, /3p, and 5p are such that the constraints in (25) are satisfied. o

 Again we skip the proof of this lemma which consists in writing the Euler-
 Lagrange equations associated with (25). As before, we use this lemma with
 p =p~n+1 , T = Tn+ 1 f f= - un+ 1u), g = gi(v - u7n+ 1), and the corresponding
 minimizers Fp, Gp thus satisfy

 Fp [ (F<Y+1 Gv)1 d/(Y1)1P ? jk( v
 (26) ? j

 < [kln (v)(I -av+ -av-) + kV I (v)avv + ki I (v)av+] dv.
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 124 BRAHIM KHOBALATTE AND BENOIT PERTHAME

 Now we let p go to ?oo and we find exactly the entropy inequality (1 5), since

 the right-hand side of (26) goes to pn71H(Uin+l) and

 k/2(v) (I - av+ - uv-) dv ---+ (p( - aFp, (U/n) ? uF7(Ujn))f(U),

 I I 1(v)v? dv -?F? (?U/J)FI(UJn).

 This concludes the proof of Theorem 1. El

 We end this section with some remarks on the entropy. First, notice that the
 choice

 K w 2 ( 1+2pA)12p K w 2a
 X = 1- ,S + ) - = $ I - A y

 in the scheme (7)-(10) leads to an entropy inequality (for a regular entropy
 now) of the form (15) with

 HI(U) = typp(p/T1(1- 1))2p, G+ = j VF (Fy+1 Gy-3)p(y- 1) dv,
 v>0

 with Fp, Gp defined in Lemma 3 and some appropriate constant lip. The
 proof of this, as well as the proof of (ii) in Theorem 1, follows in fact that of
 [6], but here we have a more general approach dealing with two functions f, g
 rather than two kinetic variables v, I as in Deshpande [1]. Also we would like
 to emphasize that an exact entropy inequality is necessary to get a maximum
 principle on the specific entropy, and it is an open question if the proofs of
 Osher [5] or Tadmor [11] could be extended to get, for Roe or Osher schemes,
 a maximum principle, or for kinetic schemes the entropy inequality.

 2. THE 2D CASE

 We show here that our results can be naturally extended to the 2D equations
 discretized on an unstructured mesh. Our motivations and notations follow
 those introduced in Perthame and Qiu [8].

 Consider a grid as shown in Figure 1, where cells Ci have L(i) edges
 E1, ... , EL (L = 3 for triangles, 4 for rectangles, and depends on i for dual
 type grids). We call v1 the unit outward normal to El, IEIu the length of
 El, ICIl the area of Ci, and j(l) the index of the cell Cj(l) neighboring Ci
 along El (j(l) also depends on i, but we omit this dependence for simplicity).

 We now set Un= (p, pu, PU2, E)n and we consider numerical schemes
 for the equations (1) of the form

 L(i)

 U/n+l I CJ = Ui ICu I-At ZIEuIF, V,
 1-1

 FIZvJ = F+(Uin, vl) + F- (Ujnl), v1),

 (27) (, T)Gp ( ) d

 l ~~~~~~~~+ (0, O, T)t v ( dvIT.
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 F: iV t /t'' ,, ~~~~~~~Xj(')

 . X st--------'

 FIGURE 1. An example of unstructured mesh

 The consistency relations are now that the nonnegative even functions X, 'p

 satisfy

 (28) ~ ~ ~ ~ ~ ~ ~ ~~ -

 the general value of AL is (2 + N - Ny)/2(y - 1) in N dimensions, 1 < y

 (N?+ 2)/N. We now choose

 (29) (w)=a(I1- 1W 1)2 tP(w)= (i 1w2)+

 where again a, f8, and 5 are the only constants which yield (28). We obtain
 the following theorem.

 Theorem 4. The scheme (27)-(29) satisfies
 (i) pnl+1 > 0, Tn+1 > 0 whnvrn7?0 T~! 0,
 (ii) the singular family of conservative entropy inequalities

 (iii) the maximum principle on the specific entropy

 S1 Sjn'l i ~' I

 under the CFL condition AtZ ElE IHuI70 + 1317Tjn) ? ICJ for all i. El

 In (30), rl is defined as before by formula (14) and

 Notice that the notation ? here differs from that of the 1 D case, because of
 the introduction of the normals, and because we have no natural orientation for
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 126 BRAHIM KHOBALATTE AND BENOIT PERTHAME

 an unstructured grid. Again, the right-hand side of (30) is composed of L + 1

 nonnegative terms, and we use the convention that it is +oo whenever one of
 those L + I1 terms is +oo.

 We skip the proof of Theorem 4, which is a straightforward extension of that
 in ? 1. The only new point is to introduce, following [8], the kinetic scheme

 t (V ) l CtI= fi (V)( l C l -tv*v/+ l )I + v1*v) _ lE/ lfn() (v )
 (with similar formulae acting on g ), together with the conditions

 (33) fn=pn~(V Un) ~ 2 DV Un)
 ( )I n

 Then the exponents in (29) are uniquely recovered by the requirement that,

 (fgY-2)l/(Y-l) being homogeneous to S1{.. }, the minimum in Lemma 2, with
 the constraint fgy-2 < ,y-l, be achieved for our choice of X, qp in (29).

 3. MINIMAL LIMITATIONS FOR SECOND-ORDER SCHEMES

 We return to the 1D case and consider second-order schemes in space and
 time obtained using slope reconstruction (see [12]) together with a Runge-Kutta
 scheme in time. Our purpose is to show that only few oscillations appear (see
 Figure 2) with the above kinetic scheme, using centered slopes on p, u, T and
 limited so as to preserve the nonnegativity of p and T as in [7]. Moreover, an
 additional limitation ensuring the maximum principle on the specific entropy
 up to second order is enough to damp all oscillations (see Figure 3 on p. 128).
 This amounts to a single limitation of min-mod type, combining Dp, DT for

 three quantities. The results are more accurate than with a min-mod limitation
 on the three quantities, as is shown in Figure 4 (p. 128).

 3.1. The second-order scheme. Denote by Un/ ? the inner approximations in

 the mesh i of Un(X+11/2 ? Ax/2). The construction of AU is discussed later.
 Then, the second-order, in space and time, scheme we use is

 Ui -Uin T+ a(F+(Uin/+) + F-(Ui7'-) - F+(Uin+) - F-(Uin)) 0,
 (34) < zU (F+(UJi+) + F-(i-+,) - F+(Usi+ l--U-) (34 ' - U, +a oj~U~ >T~)-F( 1) F- F>U7)) = 0,

 U1n+ = (Un + U1)/2.

 This particular Runge-Kutta scheme will preserve nonnegativity, while we would
 be unable to prove it with other schemes. The reason is that U and U will
 have nonnegative density and temperature, and then a convex combination of
 them, as Un+1 , will also, since p and pT are concave functions of U.

 3.2. Nonnegativity of p, T and limitations. We now prove that the scheme
 (34), with light limitations on a centered prediction of the derivatives, preserves
 nonnegativity. We use the variables p, u, and E; = pY/p = SY-1, and set

 (Api = sgn(p,+1 - pi-l)min(lpi+l - pi-, 1/4, pi),

 (35) Au, = sgn(ui+l - ui- )min((ui+1 - ui_11/4, VTi/(Y - 1)),
 l Al1 = sgn(i+ I - -l)mirnn(ji+ 1 - Y-- l 1 /4, Ei/4).
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 DENSITY I VELOCITY
 I 0 ._ 1. 0 r~d

 0. 7 0.6G

 0. 4 0. 3

 0 1 ._ _ _ _ _ _ _ _ _ -0.1 I _ _ _ _ _ _ _ _ _ _ _

 0. 0 0. 3 0. 7 I. 0 0. 0 O. 03 0. 7 1. 0

 PRESSURE ENERGY

 0. 7 2. 6

 0. 4 2. 2

 0. 0 0. 3 0. 7 1. 0 0. 0 0.3 0.7 1.0

 ENTROPY

 1 0.

 0. 7

 0 5 , , W , f . . . , g r

 0 0 0 3 0. 7 1.0

 FIGURE 2. Sod shock tube, 200 points, second-order scheme
 with centered, nonlimited slopes

 Then, following the idea introduced in [7], we set (dropping the exponent n)

 (36) Pi = pi ?Api, u = u? Aui, Y? -i ? Ai,
 where ui and Xi are computed for conservation of momentum and energy by

 + +2 +Y - - 2 - y
 p+u+p u7= 2piui, Pil + P + ? + - 2Ej.

 2 Xt( - 1) 2 _ 1
 This is readily achieved for the second-order modifications of ui, 1i given by

 (37) ui = ui -Aui, t = Ap1/pi,
 and with Ei being the largest root of the polynomial

 (37') - - (A + B)E + (B -A)AEi - CA.1 = 0,
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 DENSITY VELOCITY

 0. 7 0.6

 0. 40.

 0.1 ... ,,,, -0.1 ._______.______.__
 0.0 0.3 0.7 1.0O 0.0 3 0.7 1.0

 PRESSURE ENERGY
 1 0 2 9

 0. 2 2. 5

 0. 4 2. 1

 0.1i.

 0.0 0.3 0.7 1.0 0.0 0.3 0.7 1. 0

 ENTROPY
 1. 0

 0.8 aI
 0. 7

 0.5 0.00.3 0. 7 [1 ___

 FIGURE 3. Sod shock tube, 200 points, second-order scheme
 with the only limitation on the entropy (6)

 average order of the scheme

 energy density velocity
 type of reconstruction

 min-mod .77 .87 .96

 centered .79 .87 .99

 centered + limitation on entropy .87 .91 1.00

 FIGURE 4. L1 error obtained for energy, density, and velocity
 computed with three types of construction of the slopes
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 where

 A - (pi- ApI), B - (pi + Ap) C = 2p, T, + I (-2 _ 1)(AUI)2/(y - 1).

 It is indeed easy to check that (37') has a nonnegative discriminant, whatever
 Ai\ is. Also, pi > 0, and thus we obtain

 Theorem 5. The scheme (34)-(37') preserves the positivity of p and T, under

 the CFL condition (1un'?1 + /3Tin,) < 1/2.
 Proof. First of all, we show that U has nonnegative density and temperature.

 We use the following kinetic scheme:

 (38) fi-(finl + fi )/2 + [vJfi', -vJfi7+' -vJfij +v-fin,] = O,

 with the same equation for g, and

 fl? pi (( A ) ignJ pfl?<()

 We claim that (38) yields, using the same combination as in ?1, the scheme
 (34). Indeed, we just have to check that the second term of (38) gives U2 ; this
 is true since

 |[(I, V, V2 12)(f.n, + + fin,- + (O,5 O, 1)(gn, + + gn, -)] dv

 Ui ' + + Ui ' =2Ui

 thanks to (36). Now to check the nonnegativity of f, we need 1/2 > jvI ,
 which gives the CFL number of one half. O

 At this level, the limitations involved in (35) are very light, but give few
 oscillations (Figure 2). Let us go one step further and consider the maximum
 principle on the entropy.

 3.3. Limitation by maximum of entropy. We still denote E = pY/p and we
 now require to have the maximum principle on S or X. Therefore, we impose
 the following additional limitation in (35), (37'):

 (39) JAil < max(Xi, Xij1, EX-1) - Ei.

 This implies a maximum principle on i? 1/2 up to a second-order term, because
 Xi?l/2 is given through Yi and not Xi in (36). It seems impossible to perform
 second-order reconstruction satisfying the conservativity requirements (36) and
 the maximum principle on l or S.

 In Figure 3, we show the numerical results obtained coupling the scheme
 (34)-(37) to the additional limitation (39); the oscillations around the contact
 discontinuity are damped completely and only an overshoot remains before and
 after the shock waves. This is also true for other tests problems: Lax shock tube,
 blast waves problem.

 In order to test other types of problems, we have run our method on the slow
 shock proposed in [13]. Again, an overshoot appears, which is immediately
 damped while an oscillation usually propagates with first-order solvers [ 13]. We
 have also tested the shock tube proposed by Einfeldt, Munz, Roe, and Sjogreen
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 ENERRGY MOENTU

 4. 3 0.7

 2. 1 -0. 7

 0.0 . . -2 1

 0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

 DENSITY ~~~~~~~~~~~1MACHNUMkER__
 1. 0 . .

 0.7 . _7

 0.4 -1.7

 0.0 -5.0 _

 0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

 PRESSURE ~~~~~~~~~~~~~~VELO~CITY
 0. 4 2. 0

 0. 3 -0. 7-

 0. 1 - ~~~~~~~~~~~~~~~~~-0. 7-

 0.0.. -2. 0

 00 0. 3 0. 7 1.0o 0.0 0.3 0.7 LO

 FIGURE 5. 200 points, second-order scheme with the only limi-
 tation on the entropy (6); problem (1-2-0-3) at time t - 0.1
 of [14]

 [14], where a zero temperature point arises. As asserted by the mathematical
 study, the scheme is stable, and we obtain indeed second-order results (compare
 Figure 5 and [14]).

 Remark. The choice of p and u as primitive variables for the reconstruction
 is somewhat arbitrary here. Only X plays a particular role. Let us only point
 out that they lead to particularly simple computations, and they are natural in
 the kinetic schemes.
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